Molecular Mechanisms that Restrict Yeast Centrosome Duplication to One Event per Cell Cycle
نویسندگان
چکیده
BACKGROUND The spindle pole body (SPB) of budding yeast is the functional equivalent of the mammalian centrosome. Like the centrosome, the SPB duplicates once per cell cycle. The new SPB assembles adjacent to the mother SPB at a substructure called the bridge. The half-bridge, the bridge precursor, is a one-sided extension of the SPB central plaque layered on both sides of the nuclear envelope. Parallel Sfi1 molecules longitudinally span the half-bridge with their N termini embedded in the SPB central plaque, whereas their C termini mark the half-bridge distal end. In early G1, half-bridge elongation by antiparallel C-to-C dimerization of Sfi1 exposes free N-Sfi1 where the new SPB assembles. After SPB duplication, the dimerized Sfi1 is severed to allow spindle formation and SPB reduplication. RESULTS We show that Sfi1 C-terminal domain harbors phosphorylation sites for Cdk1 and the polo-like kinase Cdc5. Cdk1 and, to a lesser extent, Cdc5 inhibit SPB duplication as phosphomimetic sfi1 mutations lead to metaphase cells with a single SPB. In contrast, phosphoinhibitory sfi1 mutations in Cdk1 sites are lethal because cells fail to sever the bridge after SPB duplication. Moreover, Cdc14 dephosphorylates C-Sfi1 to prepare it for a new round of duplication, and the kinase Mps1 promotes Sfi1 extension in G1. CONCLUSIONS Positive (Cdc14) and negative (Cdk1 and Cdc5) SPB duplication signals are integrated at the level of the half-bridge component Sfi1. In addition, Mps1 activates Sfi1 duplication. Fluctuating activities of these regulators ensure one SPB duplication event per cell cycle.
منابع مشابه
Licensing of Yeast Centrosome Duplication Requires Phosphoregulation of Sfi1
Duplication of centrosomes once per cell cycle is essential for bipolar spindle formation and genome maintenance and is controlled in part by cyclin-dependent kinases (Cdks). Our study identifies Sfi1, a conserved component of centrosomes, as the first Cdk substrate required to restrict centrosome duplication to once per cell cycle. We found that reducing Cdk1 phosphorylation by changing Sfi1 p...
متن کاملRegulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle.
Centrosome duplication involves the formation of a single procentriole next to each centriole, once per cell cycle. The mechanisms governing procentriole formation and those restricting its occurrence to one event per centriole are poorly understood. Here, we show that HsSAS-6 is necessary for procentriole formation and that it localizes asymmetrically next to the centriole at the onset of proc...
متن کاملThe C. elegans zyg-1 Gene Encodes a Regulator of Centrosome Duplication with Distinct Maternal and Paternal Roles in the Embryo
Centrosome duplication is a critical step in assembly of the bipolar mitotic spindle, but the molecular mechanisms regulating this process during the cell cycle and during animal development are poorly understood. Here, we report that the zyg-1 gene of Caenorhabditis elegans is an essential regulator of centrosome duplication. ZYG-1 is a protein kinase specifically required for daughter centrio...
متن کاملOverly Long Centrioles and Defective Cell Division upon Excess of the SAS-4-Related Protein CPAP
The centrosome is the principal microtubule organizing center (MTOC) of animal cells. Accurate centrosome duplication is fundamental for genome integrity and entails the formation of one procentriole next to each existing centriole, once per cell cycle. The procentriole then elongates to eventually reach the same size as the centriole. The mechanisms that govern elongation of the centriolar cyl...
متن کاملRegulation of the centrosome cycle
The centrosome, consisting of mother and daughter centrioles surrounded by the pericentriolar matrix (PCM), functions primarily as a microtubule organizing center (MTOC) in most animal cells. In dividing cells the centrosome duplicates once per cell cycle and its number and structure are highly regulated during each cell cycle to organize an effective bipolar spindle in the mitotic phase. Defec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 24 شماره
صفحات -
تاریخ انتشار 2014